90 research outputs found

    Chromosomal Alterations and Gene Expression Changes Associated with the Progression of Leukoplakia to Advanced Gingivobuccal Cancer

    Get PDF
    We present an integrative genome-wide analysis that can be used to predict the risk of progression from leukoplakia to oral squamous cell carcinoma (OSCC) arising in the gingivobuccal complex (GBC). We find that the genomic and transcriptomic profiles of leukoplakia resemble those observed in later stages of OSCC and that several changes are associated with this progression, including amplification of 8q24.3, deletion of 8p23.2, and dysregulation of DERL3, EIF5A2, ECT2, HOXC9, HOXC13, MAL, MFAP5 and NELL2. Comparing copy number profiles of primary tumors with and without lymph-node metastasis, we identify alterations associated with metastasis, including amplifications of 3p26.3, 8q24.21, 11q22.1, 11q22.3 and deletion of 8p23.2. Integrative analysis reveals several biomarkers that have never or rarely been reported in previous OSCC studies, including amplifications of 1p36.33 (attributable to MXRA8), 3q26.31 (EIF5A2), 9p24.1 (CD274), and 12q13.2 (HOXC9 and HOXC13). Additionally, we find that amplifications of 1p36.33 and 11q22.1 are strongly correlated with poor clinical outcome. Overall, our findings delineate genomic changes that can be used in treatment management for patients with potentially malignant leukoplakia and OSCC patients with higher risk of lymph-node metastasis

    The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer

    Get PDF
    Lysophosphatidic acid (LPA) is a bioactive lipid promoting cancer metastasis. LPA activates a series of six G protein-coupled receptors (LPA1-6). While blockage of LPA1 in vivo inhibits breast carcinoma metastasis, down-stream genes mediating LPA-induced metastasis have not been yet identified. Herein we showed by analyzing publicly available expression data from 1488 human primary breast tumors that the gene encoding the transcription factor ZEB1 was the most correlated with LPAR1 encoding LPA1. This correlation was most prominent in basal primary breast carcinomas and restricted to cell lines of basal subtypes. Functional experiments in three different basal cell lines revealed that LPA-induced ZEB1 expression was regulated by the LPA1/Phosphatidylinositol-3-Kinase (Pi3K) axis. DNA microarray and real-time PCR analyses further demonstrated that LPA up-regulated the oncomiR miR-21 through an LPA1/Pi3K/ZEB1-dependent mechanism. Strikingly, treatment with a mirVana miR-21 inhibitor, or silencing LPA1 or ZEB1 completely blocked LPA-induced cell migration in vitro, invasion and tumor cell bone colonization in vivo, which can be restored with a mirVana miR-21 mimic. Finally, high LPAR1 expression in basal breast tumors predicted worse lung-metastasis-free survival. Collectively, our results elucidate a new molecular pathway driving LPA-induced metastasis, thus underscoring the therapeutic potential of targeting LPA1 in patients with basal breast carcinomas

    Chromosomal Alterations and Gene Expression Changes Associated with the Progression of Leukoplakia to Advanced Gingivobuccal Cancer

    Get PDF
    We present an integrative genome-wide analysis that can be used to predict the risk of progression from leukoplakia to oral squamous cell carcinoma (OSCC) arising in the gingivobuccal complex (GBC). We find that the genomic and transcriptomic profiles of leukoplakia resemble those observed in later stages of OSCC and that several changes are associated with this progression, including amplification of 8q24.3, deletion of 8p23.2, and dysregulation of DERL3, EIF5A2, ECT2, HOXC9, HOXC13, MAL, MFAP5 and NELL2. Comparing copy number profiles of primary tumors with and without lymph-node metastasis, we identify alterations associated with metastasis, including amplifications of 3p26.3, 8q24.21, 11q22.1, 11q22.3 and deletion of 8p23.2. Integrative analysis reveals several biomarkers that have never or rarely been reported in previous OSCC studies, including amplifications of 1p36.33 (attributable to MXRA8), 3q26.31 (EIF5A2), 9p24.1 (CD274), and 12q13.2 (HOXC9 and HOXC13). Additionally, we find that amplifications of 1p36.33 and 11q22.1 are strongly correlated with poor clinical outcome. Overall, our findings delineate genomic changes that can be used in treatment management for patients with potentially malignant leukoplakia and OSCC patients with higher risk of lymph-node metastasis

    Bayesian reassessment of the epigenetic architecture of complex traits

    Get PDF
    Linking epigenetic marks to clinical outcomes improves insight into molecular processes, disease prediction, and therapeutic target identification. Here, a statistical approach is presented to infer the epigenetic architecture of complex disease, determine the variation captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly. Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in 9,448 individuals, 75.7% (95% CI 71.70–79.3) of body mass index (BMI) variation and 45.6% (95% CI 37.3–51.9) of cigarette consumption variation was captured by whole blood methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger associations with >95% posterior inclusion probability. Prediction accuracy improved by 28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity, implying associations are a phenotypic consequence rather than causal

    Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies

    Get PDF
    BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis ( 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk

    Participatory non-GM cotton breeding to safeguard organic cotton production in India

    Get PDF
    Due to fast spread of genetically modified (GM) Bt-cotton, organic farmers in India were suddenly exposed to a severe shortage of non-GM seed threatening the organic cotton production. Therefore, organic cotton grower organisations got engaged in decentralized participatory cotton breeding to develop their own locally adapted cultivars and to reintroduce the traditional more robust Desi cotton species. By engaging and training advisors and farmers using participatory methods, they became researchers and breeders. The close collaboration with the textile industry ensures that the market demand is also met. Training of male and female farmers in cultivar selection and seed propagation made them independent from global seed companies. Participatory breeding is an important tool to get prepared for future challenges like climate change and at the same time strengthens the relationship along the value chain. The project can serve as a successful model for other organisations and crops

    Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study

    Get PDF
    BACKGROUND: There is increasing evidence that folate, an important component of one-carbon metabolism, modulates the epigenome. Alcohol, which can disrupt folate absorption, is also known to affect the epigenome. We investigated the association of dietary folate and alcohol intake on leukocyte DNA methylation levels in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Leukocyte genome-wide DNA methylation profiles on approximately 450,000 CpG sites were acquired with Illumina HumanMethylation 450K BeadChip measured among 450 women control participants of a case-control study on breast cancer nested within the EPIC cohort. After data preprocessing using surrogate variable analysis to reduce systematic variation, associations of DNA methylation with dietary folate and alcohol intake, assessed with dietary questionnaires, were investigated using CpG site-specific linear models. Specific regions of the methylome were explored using differentially methylated region (DMR) analysis and fused lasso (FL) regressions. The DMR analysis combined results from the feature-specific analysis for a specific chromosome and using distances between features as weights whereas FL regression combined two penalties to encourage sparsity of single features and the difference between two consecutive features. RESULTS: After correction for multiple testing, intake of dietary folate was not associated with methylation level at any DNA methylation site, while weak associations were observed between alcohol intake and methylation level at CpG sites cg03199996 and cg07382687, with qval = 0.029 and qval = 0.048, respectively. Interestingly, the DMR analysis revealed a total of 24 and 90 regions associated with dietary folate and alcohol, respectively. For alcohol intake, 6 of the 15 most significant DMRs were identified through FL. CONCLUSIONS: Alcohol intake was associated with methylation levels at two CpG sites. Evidence from DMR and FL analyses indicated that dietary folate and alcohol intake may be associated with genomic regions with tumor suppressor activity such as the GSDMD and HOXA5 genes. These results were in line with the hypothesis that epigenetic mechanisms play a role in the association between folate and alcohol, although further studies are warranted to clarify the importance of these mechanisms in cancer

    Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study

    Get PDF
    Background: There is increasing evidence that folate, an important component of one-carbon metabolism, modulates the epigenome. Alcohol, which can disrupt folate absorption, is also known to affect the epigenome. We investigated the association of dietary folate and alcohol intake on leukocyte DNA methylation levels in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Leukocyte genome-wide DNA methylation profiles on approximately 450,000 CpG sites were acquired with Illumina HumanMethylation 450K BeadChip measured among 450 women control participants of a case-control study on breast cancer nested within the EPIC cohort. After data preprocessing using surrogate variable analysis to reduce systematic variation, associations of DNA methylation with dietary folate and alcohol intake, assessed with dietary questionnaires, were investigated using CpG site-specific linear models. Specific regions of the methylome were explored using differentially methylated region (DMR) analysis and fused lasso (FL) regressions. The DMR analysis combined results from the feature-specific analysis for a specific chromosome and using distances between features as weights whereas FL regression combined two penalties to encourage sparsity of single features and the difference between two consecutive features. Results: After correction for multiple testing, intake of dietary folate was not associated with methylation level at any DNA methylation site, while weak associations were observed between alcohol intake and methylation level at CpG sites cg03199996 and cg07382687, with q(val)=0.029 and q(val)=0.048, respectively. Interestingly, the DMR analysis revealed a total of 24 and 90 regions associated with dietary folate and alcohol, respectively. For alcohol intake, 6 of the 15 most significant DMRs were identified through FL. Conclusions: Alcohol intake was associated with methylation levels at two CpG sites. Evidence from DMR and FL analyses indicated that dietary folate and alcohol intake may be associated with genomic regions with tumor suppressor activity such as the GSDMD and HOXA5 genes. These results were in line with the hypothesis that epigenetic mechanisms play a role in the association between folate and alcohol, although further studies are warranted to clarify the importance of these mechanisms in cancer

    DNA methylome analysis identifies accelerated epigenetic aging associated with postmenopausal breast cancer susceptibility

    Get PDF
    Aim of the study A vast majority of human malignancies are associated with ageing, and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker of ageing, known as ‘epigenetic clock’, has been linked with cancer risk factors. This study aimed to evaluate whether the epigenetic clock is associated with breast cancer risk susceptibility and to identify potential epigenetics-based biomarkers for risk stratification. Methods Here, we profiled DNA methylation changes in a nested case–control study embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (n = 960) using the Illumina HumanMethylation 450K BeadChip arrays and used the Horvath age estimation method to calculate epigenetic age for these samples. Intrinsic epigenetic age acceleration (IEAA) was estimated as the residuals by regressing epigenetic age on chronological age. Results We observed an association between IEAA and breast cancer risk (OR, 1.04; 95% CI, 1.007–1.076, P = 0.016). One unit increase in IEAA was associated with a 4% increased odds of developing breast cancer (OR, 1.04; 95% CI, 1.007–1.076). Stratified analysis based on menopausal status revealed that IEAA was associated with development of postmenopausal breast cancers (OR, 1.07; 95% CI, 1.020–1.11, P = 0.003). In addition, methylome-wide analyses revealed that a higher mean DNA methylation at cytosine-phosphate-guanine (CpG) islands was associated with increased risk of breast cancer development (OR per 1 SD = 1.20; 95 %CI: 1.03–1.40, P = 0.02) whereas mean methylation levels at non-island CpGs were indistinguishable between cancer cases and controls. Conclusion Epigenetic age acceleration and CpG island methylation have a weak, but statistically significant, association with breast cancer susceptibility
    corecore